Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Artificial Neural Network Based Face Recognition System
Post: #1

Identify some unique feature in the face image of a person, and then extract that Feature and compare. The system Extract eye from the face image and the extracted Image is given to input layer of artificial neural network. After three levels of processing, this network will generate a string which will be compared to the string earlier stored in the database for that face image. If the generated string of the current image already exists in the database, then it can be concluded that the image data is already entered in the database. Hence the system will verify the identity of an applicant by using neural networks. This software is intended to be used in passport offices to compare photographs of the applicants. The objective of the project is to check whether an applicant has already applied for passport on an earlier occasion to prevent bogus applications.
Post: #2
plz send more information on face recognition using neural network.
Post: #3



Today, Internet rules the world. The Internet is used to access the
complete facility of transferring the information, besides maintaining the
secrecy of the document. Since the network is considered to be insecure, the
encryption and authentication are used to protect the data while it is being
transmitted. The security is insufficient when the codes for encryption and decryption are revealed. There comes the necessity of increasing the security through face recognition usingneural network. Though it is costlier, it provides the high advantage of tight security. This paper deals with the recognition of images using neural networks. It is used in identifyingparticular people in real time or allows access to a group of people and denies access to the rest.The system combines local image sampling, the self-organizing map neural network,and a convolutional neural network. The self-organizing map provides the quantization ofimage samples into a topological space where inputs that are nearby in the original space arealso in the output space, thereby providing dimensionality reduction and invariance to minorchanges in the image sample. All these features are implemented using MATLAB v 6.5. Theconvolutional neural network provides for the partial invariance to translational, rotation,scale, and deformation. Hence it is analyzed that by implementing face recognition insecurity systems, the business transaction via Internet can be improved.
NOTE : The Matlab Codes will be shown at the time of presentation.


The paper presents a hybrid neural network solution, which compares favorably withother methods and recognizes a person within a large database of faces. These neuralsystems typically return a list of most likely people in the database. Often only one image isavailable per person.First a database is created, which contains images of various persons. In the nextstage, the available images are trained and stored in the database. Finally it classifies theauthorized person’s face, which is used in security monitoring system. Faces representcomplex, multidimensional, meaningful visual stimuli and developing a computational modelfor face recognition is difficult.Face has certain distinguishable landmarks that are the peaks and valleys that sum upthe different facial features. There are about 80 peaks and valleys on a human face. Thefollowing are a few of the peaks and valleys that are measured by the software:
Distance between eyes
Width of nose
Depth of eye sockets
Jaw line
These peaks and valleys are measured to give a numerical code, a string of numbers, whichrepresents the face in a database. This code is called a face print. Here the detecting,capturing and storing faces by the system is dealt with. Below is the basic process that couldbe used by the system to capture and compare images:


When the system is attached to a video surveillance system, the Recognition softwaresearches the field of view of a video camera for faces. Once the face is in view, it is detectedwithin a fraction of a second. A multi-scale algorithm, which is a program that provides a setof instructions to accomplish a specific task, is used to search for faces in low resolution. .The system switches to a high-resolution search only after a head-like shape is detected.


Once a face is detected, the head's position, size and pose is the first thing that is
determined. A face needs to be turned at least 35 degrees toward the camera for the system toregister it.


The image of the head is scaled and rotated so that it can be Registered and mappedinto an appropriate size and pose. Normalization is performed irrespective of the head'slocation and distance from the camera. Light does not have any impact on the normalizationprocess.


Translation of facial data into unique code is done by the system. This Coding
process supports easier comparison of the newly acquired facial data to stored facial data.


The newly acquired facial data is compared to the stored data and (ideally) linked toat least one stored facial representation. Briefly, the use of local image sampling and atechnique for partial lighting invariance, a self-organizing map (SOM) for projection of theimage sample representation into a quantized lower dimensional space, the Karhunen Loève(KL) transform for comparison with the self-organizing map, a convolutional network (CN)for partial translation and deformation invariance, and a multi-layer perceptron (MLP) forcomparison with the convolutional network is explored.

Post: #4
to get information about the topic FACE RECOGNITION USING NEURAL NETWORKS full report ,ppt and related topic refer the link bellow

Important Note..!

If you are not satisfied with above reply ,..Please


So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Popular Searches: artificial neural network 2010 ppt, artificial neural network by b yegnanarayana free download pdf, artificial neural network pdf, project of face recogntion using nural network, lda face recognition neural network matlab code, neural network based, artificial neural network by b yegnanarayana pdf free download,

Quick Reply
Type your reply to this message here.

Image Verification
Image Verification
(case insensitive)
Please enter the text within the image on the left in to the text box below. This process is used to prevent automated posts.

Possibly Related Threads...
Thread: Author Replies: Views: Last Post
  Content-based image retrieval (CBIR) System project topics 15 11,658 13-05-2016 02:30 PM
Last Post: dhanyavp
  Development of a workflow based Complaint Management System (where the complaints are mechanical engineering crazy 5 4,167 28-08-2015 04:59 AM
Last Post: AlbertFak
  Web Based Blood Bank Management System project report maker 4 11,053 18-04-2015 07:12 PM
Last Post: Guest
  MOBILE PHONE BASED ATTENDANCE TRACKING SYSTEM seminarsonly 25 18,063 06-03-2015 07:18 PM
Last Post: unas
  A PROACTIVE APPROACH TO NETWORK SECURITY nit_cal 1 1,310 19-09-2014 12:52 AM
Last Post: [email protected]
  Handwriting Recognition computer science topics 9 4,772 20-07-2013 11:07 AM
Last Post: computer topic
  Handwriting recognition project report seminar addict 3 2,997 24-06-2013 11:24 AM
Last Post: computer topic
  IEEE Project on Network Simulation using OMNeT++ 3.2 for M.Tech and B.Tech VickyBujju 3 1,979 03-06-2013 11:13 AM
Last Post: computer topic
  Face Recognition Using Artificial Neural Networks nit_cal 2 3,754 20-04-2013 11:25 AM
Last Post: computer topic
  The Wireless Sensor Network for Home-Care System Using ZigBee smart paper boy 1 1,303 31-01-2013 11:34 AM
Last Post: seminar details