Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Automotive Stream Based Data Management
Post: #1

An embedded system is a special-purpose system in which the computer is completely encapsulated by the device it controls. Unlike a general-purpose computer, such as a personal computer, an embedded system performs one or a few pre-defined tasks, usually with very specific requirements. Since the system is dedicated to specific tasks, design engineers can optimize it, reducing the size and cost of the product.
Post: #2
Stream-based Data Management
Characteristics of Data Streams

 Data Streams
 Data streams—continuous, ordered, changing, fast, huge amount
 Traditional DBMS—data stored in finite, persistent data sets
 Characteristics
 Huge volumes of continuous data, possibly infinite
 Fast changing and requires fast, real-time response
 Data stream captures nicely our data processing needs of today
 Random access is expensive—single linear scan algorithm (can only have one look)
 Store only the summary of the data seen thus far
 Most stream data are at pretty low-level or multi-dimensional in nature, needs multi-level and multi-dimensional processing
Stream Data Applications
 Telecommunication calling records
 Business: credit card transaction flows
 Network monitoring and traffic engineering
 Financial market: stock exchange
 Engineering & industrial processes: power supply & manufacturing
 Sensor, monitoring & surveillance: video streams
Security monitoring
 Web logs and Web page click streams
 Massive data sets (even saved but random access is too expensive)
 Data Streams vs. Data Sets
Data Sets: Data Streams:
 Updates infrequent
 Using Traditional Database
 Data Streams Paradigm
 Data Streams Paradigm
 DBMS versus DSMS
• Persistent relations
• Transient streams (and persistent relations)
 DBMS versus DSMS
• Persistent relations
• Transient streams (and persistent relations)
 DBMS versus DSMS
• Persistent relations
• Transient streams (and persistent relations)
 DBMS versus DSMS
• Persistent relations
• Transient streams (and persistent relations)
 DBMS versus DSMS
• Persistent relations
• Transient streams (and persistent relations)
Challenges of Stream Data Processing
 Multiple, continuous, rapid, time-varying, ordered streams
 Main memory computations
 Queries are often continuous
 Evaluated continuously as stream data arrives
 Answer updated over time
 Queries are often complex
 Beyond element-at-a-time processing
 Beyond relational queries (scientific, data mining, OLAP)
 Multi-level/multi-dimensional processing and data mining
 Most stream data are at pretty low-level or multi-dimensional in nature
Processing Stream Queries
 Query types
 One-time query vs. continuous query (being evaluated continuously as stream continues to arrive)
 Predefined query vs. ad-hoc query (issued on-line)
 Unbounded memory requirements
 For real-time response, main memory algorithm should be used
 Memory requirement is unbounded if one will join future tuples
 Approximate query answering
 With bounded memory, it is not always possible to produce exact answers
 High-quality approximate answers are desired
 Data reduction and synopsis construction methods
 Sketches, random sampling, histograms, wavelets, etc.
Methods for Approximate Query Answering
 Sliding windows
 Only over sliding windows of recent stream data
 Approximation but often more desirable in applications
 Batched processing, sampling and synopses
 Batched if update is fast but computing is slow
 Compute periodically, not very timely
 Sampling if update is slow but computing is fast
 Compute using sample data, but not good for joins, etc.
 Synopsis data structures
 Maintain a small synopsis or sketch of data
 Good for querying historical data
 Blocking operators, e.g., sorting, avg, min, etc.
 Blocking if unable to produce the first output until seeing the entire input
 Projects on DSMS (Data Stream Management System)
Research projects and system prototypes
 STREAM (Stanford): A general-purpose DSMS
 Cougar (Cornell): sensors
 Aurora (Brown/MIT): sensor monitoring, dataflow
 Hancock (AT&T): telecom streams
 Niagara (OGI/Wisconsin): Internet XML databases
 OpenCQ (Georgia Tech): triggers, incr. view maintenance
 Tapestry (Xerox): pub/sub content-based filtering
 Telegraph (Berkeley): adaptive engine for sensors
 Tradebot ( stock tickers & streams
 Tribeca (Bellcore): network monitoring
 Streaminer (UIUC): new project for stream data mining
Stream Data Mining vs. Stream Querying
 Stream mining—A more challenging task
 It shares most of the difficulties with stream querying
 Patterns are hidden and more general than querying
 It may require exploratory analysis
 Not necessarily continuous queries
 Stream data mining tasks
 Multi-dimensional on-line analysis of streams
 Mining outliers and unusual patterns in stream data
 Clustering data streams
 Classification of stream data
Challenges for Mining Unusual Patterns in Data Streams
 Most stream data are at pretty low-level or multi-dimensional in nature: needs ML/MD processing
 Analysis requirements
 Multi-dimensional trends and unusual patterns
 Capturing important changes at multi-dimensions/levels
 Fast, real-time detection and response
 Summary
 Stream data analysis: A rich and largely unexplored field
 Current research focus in database community: DSMS system architecture, continuous query processing, supporting mechanisms
 Stream data mining and stream OLAP analysis
 Powerful tools for finding general and unusual patterns
 Largely unexplored: current studies only touched the surface
 Lots of exciting issues in further study
 A promising one: Multi-level, multi-dimensional analysis and mining of stream data
 What Is A Continuous Query ?
Query which is issued once and logically run continuously.
 What is Continuous Query ?
Query which is issued once and run continuously.
 What is Continuous Query ?
Query which is issued once and run continuously.
 Special Challenges
Timely online answers even for rapid data streams
Ability of fast access to large portions of data
Processing of multiple streams simultaneously
 Making Things Concrete
 Making Things Concrete
 Database = two streams of mobile call records
 Outgoing(connectionID, caller, start, end)
 Incoming(connectionID, callee, start, end)
 Query language = SQL
FROM clauses can refer to streams and/or relations
 Query 1 (self-join)
Find all outgoing calls longer than 2 minutes
SELECT O1.call_ID, O1.caller
FROM Outgoing O1, Outgoing O2
WHERE (O2.time – O1.time > 2
AND O1.call_ID = O2.call_ID
AND O1.event = start
AND O2.event = end)
 Result requires unbounded storage
 Can provide result as data stream
 Can output after 2 min, without seeing end
 Query 2 (join)
Pair up callers and callees
SELECT O.caller, I.callee
FROM Outgoing O, Incoming I
WHERE O.call_ID = I.call_ID
 Can still provide result as data stream
 Requires unbounded temporary storage …
 … unless streams are near-synchronized
 Query 3 (group-by aggregation)
Total connection time for each caller
SELECT O1.caller, sum(O2.time – O1.time)
FROM Outgoing O1, Outgoing O2
WHERE (O1.call_ID = O2.call_ID
AND O1.event = start
AND O2.event = end)
GROUP BY O1.caller
 Cannot provide result in (append-only) stream.
• Output stream with updates
• Provide current value on demand
• Keep answer in memory
 Conventional DBMS technology is inadequate
 We need reconsider all aspects of data management and processing in presence of data streams

Important Note..!

If you are not satisfied with above reply ,..Please


So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Popular Searches: technology trends automotive, seminar on stream processor, ifb automotive summer internship topics, automotive electrical bulkhead connectors, modern automotive technology pdf free download, antenna automotive seminar, automotive technology income,

Quick Reply
Type your reply to this message here.

Image Verification
Image Verification
(case insensitive)
Please enter the text within the image on the left in to the text box below. This process is used to prevent automated posts.

Possibly Related Threads...
Thread: Author Replies: Views: Last Post
  Remote Server Monitoring System For Corporate Data Centers smart paper boy 3 1,793 28-03-2016 02:51 PM
Last Post: dhanyavp
  Secured Data Hiding and Extractions Using BPCS project report helper 4 2,695 04-02-2016 12:52 PM
Last Post: seminar report asees
  Data Hiding in Binary Images for Authentication & Annotation project topics 2 1,049 06-11-2015 02:27 PM
Last Post: seminar report asees
  Development of a workflow based Complaint Management System (where the complaints are mechanical engineering crazy 5 4,167 28-08-2015 04:59 AM
Last Post: AlbertFak
  DATA LEAKAGE DETECTION project topics 16 11,330 31-07-2015 02:59 PM
Last Post: seminar report asees
  Web Based Blood Bank Management System project report maker 4 11,054 18-04-2015 07:12 PM
Last Post: Guest
  Privacy Preservation in Data Mining sajidpk123 2 2,016 13-11-2014 10:48 PM
Last Post: jaseela123
  projects on data mining? shakir_ali 2 1,065 05-11-2014 09:30 PM
Last Post: jaseela123
  data mining full report project report tiger 35 164,097 07-10-2014 09:10 PM
Last Post: ToPWA
  Data Security Using Honey Pot System computer science topics 5 5,503 11-09-2014 07:45 PM
Last Post: erhhk