Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Electrical Seminar Abstract And Report 7
Post: #1

Low Power UART Design for Serial Data Communication

With the proliferation of portable electronic devices, power efficient data transmission has become increasingly important. For serial data transfer, universal asynchronous receiver / transmitter (UART) circuits are often implemented because of their inherent design simplicity and application specific versatility. Components such as laptop keyboards, palm pilot organizers and modems are few examples of devices that employ UART circuits. In this work, design and analysis of a robust UART architecture has been carried out to minimize power consumption during both idle and continuous modes of operation.


An UART (universal asynchronous receiver / transmitter) is responsible for performing the main task in serial communications with computers. The device changes incoming parallel information to serial data which can be sent on a communication line. A second UART can be used to receive the information. The UART performs all the tasks, timing, parity checking, etc. needed for the communication. The only extra devices attached are line driver chips capable of transforming the TTL level signals to line voltages and vice versa.

To use the device in different environments, registers are accessible to set or review the communication parameters. Setable parameters are for example the communication speed, the type of parity check, and the way incoming information is signaled to the running software.

UART types

Serial communication on PC compatibles started with the 8250 UART in the XT. In the years after, new family members were introduced like the 8250A and 8250B revisions and the 16450. The last one was first implemented in the AT. The higher bus speed in this computer could not be reached by the 8250 series. The differences between these first UART series were rather minor. The most important property changed with each new release was the maximum allowed speed at the processor bus side. The 16450 was capable of handling a communication speed of 38.4 kbs without problems.

The demand for higher speeds led to the development of newer series which would be able to release the main processor from some of its tasks. The main problem with the original series was the need to perform a software action for each single byte to transmit or receive. To overcome this problem, the 16550 was released which contained two on-board FIFO buffers, each capable of storing 16 bytes. One buffer for incoming, and one buffer for outgoing bytes.
Light Emitting Polymers (LEP)
Light Emitting Polymers (LEP)

Light emitting polymers or polymer based light emitting diodes discovered by Friend et al in 1990 has been found superior than other displays like, liquid crystal displays (LCDs) vacuum fluorescence displays and electro luminescence displays. Though not commercialised yet, these have proved to be a mile stone in the filed of flat panel displays. Research in LEP is underway in Cambridge Display Technology Ltd (CDT), the UK.

In the last decade, several other display contenders such as plasma and field emission displays were hailed as the solution to the pervasive display. Like LCD they suited certain niche applications, but failed to meet broad demands of the computer industry.

Today the trend is towards the non_crt flat panel displays. As LEDs are inexpensive devices these can be extremely handy in constructing flat panel displays. The idea was to combine the characteristics of a CRT with the performance of an LCD and added design benefits of formability and low power. Cambridge Display Technology Ltd is developing a display medium with exactly these characteristics.

The technology uses a light-emitting polymer (LEP) that costs much less to manufacture and run than CRTs because the active material used is plastic. LEP is a polymer that emits light when a voltage is applied to it. The structure comprises a thin film semi conducting polymer sandwiched between two electrodes namely anode and cathode. When electrons and holes are injected from the electrodes, the recombination of these charge carriers takes place, which leads to emission of light that escape through glass substrate.
Cruise Control Devices
Cruise Control Devices


Everyday the media brings us the horrible news on road accidents. Once a report said that the damaged property and other costs may equal 3 % of the world's gross domestic product. The concept of assisting driver in longitudinal vehicle control to avoid collisions has been a major focal point of research at many automobile companies and research organizations. The idea of driver assistance was started with the 'cruise control devices' first appeared in 1970's in USA. When switched on, this device takes up the task of the task of accelerating or braking to maintain a constant speed. But it could not consider the other vehicles on the road.

An 'Adaptive Cruise Control' (ACC) system developed as the next generation assisted the driver to keep a safe distance from the vehicle in front. This system is now available only in some luxury cars like Mercedes S-class, Jaguar and Volvo trucks the U.S. Department of transportation and Japan's ACAHSR have started developing 'Intelligent Vehicles' that can communicate with each other with the help of a system called 'Co operative Adaptive Cruise Control' .this paper addresses the concept of Adaptive Cruise Control and its improved versions.

ACC works by detecting the distance and speed of the vehicles ahead by using either a Lidar system or a Radar system [1, 2].The time taken by the transmission and reception is the key of the distance measurement while the shift in frequency of the reflected beam by Doppler Effect is measured to know the speed. According to this, the brake and throttle controls are done to keep the vehicle the vehicle in a safe position with respect to the other.

These systems are characterized by a moderately low level of brake and throttle authority. These are predominantly designed for highway applications with rather homogenous traffic behavior. The second generation of ACC is the Stop and Go Cruise Control (SACC) [2] whose objective is to offer the customer longitudinal support on cruise control at lower speeds down to zero velocity [3]. The SACC can help a driver in situations where all lanes are occupied by vehicles or where it is not possible to set a constant speed or in a frequently stopped and congested traffic [2].

There is a clear distinction between ACC and SACC with respect to stationary targets. The ACC philosophy is that it will be operated in well structured roads with an orderly traffic flow with speed of vehicles around 40km/hour [3]. While SACC system should be able to deal with stationary targets because within its area of operation the system will encounter such objects very frequently.
Boiler Instrumentation and Controls
Boiler Instrumentation and Controls

Instrumentation and controls in a boiler plant encompass an enormous range of equipment from simple industrial plant to the complex in the large utility station. The boiler control system is the means by which the balance of energy & mass into and out of the boiler are achieved. Inputs are fuel, combustion air, atomizing air or steam &feed water. Of these, fuel is the major energy input. Combustion air is the major mass input, outputs are steam, flue gas, blowdown, radiation & soot blowing.


Boiler control systems contain several variable with interaction occurring among the control loops for fuel, combustion air, & feedwater . The overall system generally can be treated as a series of basic control loops connected together. for safety purposes, fuel addition should be limited by the amount of combustion air and it may need minimum limiting for flame stability.

Combustion controls

Amounts of fuel and air must be carefully regulated to keep excess air within close tolerances-especially over the loads. This is critical to efficient boiler operation no matter what the unit size, type of fuel fired or control system used.

Feedwater control

Industrial boilers are subject to wide load variations and require quick responding control to maintain constant drum level. Multiple element feed water control can help faster and more accurate control response.
Single Photon Emission Computed Tomography (SPECT)
Single Photon Emission Computed Tomography (SPECT)

Emission Computed Tomography is a technique where by multi cross sectional images of tissue function can be produced , thus removing the effect of overlying and underlying activity. The technique of ECT is generally considered as two separate modalities. SINGLE PHOTON Emission Computed Tomography involves the use single gamma ray emitted per nuclear disintegration. Positron Emission Tomography makes use of radio isotopes such as gallium-68, when two gamma rays each of 511KeV, are emitted simultaneously where a positron from a nuclear disintegration annihilates in tissue.

SPECT, the acronym of Single Photon Emission Computed Tomography is a nuclear medicine technique that uses radiopharmaceuticals, a rotating camera and a computer to produce images which allow us to visualize functional information about a patient's specific organ or body system. SPECT images are functional in nature rather than being purely anatomical such as ultrasound, CT and MRI. SPECT, like PET acquires information on the concentration of radio nuclides to the patient's body.

SPECT dates from the early 1960 are when the idea of emission traverse section tomography was introduced by D.E.Kuhl and R.Q.Edwards prior to PET, X-ray, CT or MRI. THE first commercial Single Photon- ECT or SPECT imaging device was developed by Edward and Kuhl and they produce tomographic images from emission data in 1963. Many research systems which became clinical standards were also developed in 1980's.

SPECT is short for single photon emission computed tomography. As its name suggests (single photon emission) gamma rays are the sources of the information rather than X-ray emission in the conventional CT scan.

Similar to X-ray, CT, MRI, etc SPECT allows us to visualize functional information about patient's specific organ or body system.

Internal radiation is administrated by means of a pharmaceutical which is labeled with a radioactive isotope. This pharmaceutical isotope decays, resulting in the emission of gamma rays. These gamma rays give us a picture of what's happening inside the patient's body.

By using the most essential tool in Nuclear Medicine-the Gamma Camera. The Gamma Camera can be used in planner imaging to acquire a 2-D image or in SPECT imaging to acquire a 3-D image.
Sensors on 3D Digitization

Asynchronous Chips

Optical packet switch architectures

Digital Audio Broadcasting

Cellular Neural Network (CNN)



Before the 1950's, ferromagnetic cores were the only type of random-access, nonvolatile memories available. A core memory is a regular array of tiny magnetic cores that can be magnetized in one of two opposite directions, making it possible to store binary data in the form of a magnetic field. The success of the core memory was due to a simple architecture that resulted in a relatively dense array of cells. This approach was emulated in the semiconductor memories of today (DRAM's, EEPROM's, and FRAM's).

Ferromagnetic cores, however, were too bulky and expensive compared to the smaller, low-power semiconductor memories. In place of ferromagnetic cores ferroelectric memories are a good substitute. The term "ferroelectric' indicates the similarity, despite the lack of iron in the materials themselves.

Ferroelectric memory exhibit short programming time, low power consumption and nonvolatile memory, making highly suitable for application like contact less smart card, digital cameras which demanding many memory write operations. In other word FRAM has the feature of both RAM and ROM. A ferroelectric memory technology consists of a complementry metal-oxide-semiconductor (CMOS) technology with added layers on top for ferroelectric capacitors.

A ferroelectric memory cell has at least one ferroelectric capacitor to store the binary data, and one or two transistors that provide access to the capacitor or amplify its content for a read operation.A ferroelectric capacitor is different from a regular capacitor in that it substitutes the dielectric with a ferroelectric material (lead zirconate titanate (PZT) is a common material used)-when an electric field is applied and the charges displace from their original position spontaneous polarization occurs and displacement becomes evident in the crystal structure of the material.

Importantly, the displacement does not disappear in the absence of the electric field. Moreover, the direction of polarization can be reversed or reoriented by applying an appropriate electric field.A hysteresis loop for a ferroelectric capacitor displays the total charge on the capacitor as a function of the applied voltage. It behaves similarly to that of a magnetic core, but for the sharp transitions around its coercive points, which implies that even a moderate voltage can disturb the state of the capacitor.

One remedy for this would be to modify a ferroelectric memory cell including a transistor in series with the ferroelectric capacitor. Called an access transistor, it wo control the access to the capacitor and eliminate the need for a square like hysteresis loop compensating for the softness of the hysteresis loop characteristics and blocking unwanted disturb signals from neighboring memory cells.
Wireless Fidelity
Wireless Fidelity

Wi-Fi, or Wireless Fidelity is freedom :it allows you to connect to the internet from your couch at home, in a hotel room or a conferance room at work without wires . Wi-Fi is a wireless technology like a cell phone. Wi-Fi enabled computers send and receive data indoors and out; anywhere within the range of a base station. And the best thing of all, it is fast.

However you only have true freedom to be connected any where if your computer is configured with a Wi-Fi CERTIFIED radio (a PC card or similar device). Wi-Fi certification means that you will be able able to connect anywhere there are other Wi-Fi CERTIFIED products - whether you are at home ,office , airports, coffee shops and other public areas equipped with a Wi-Fi access availability.Wi-Fi will be a major face behind hotspots , to a much greater extent.More than 400 airports and hotels in the US are targeted as Wi-Fi hotspots.

The Wi-Fi CERTIFIED logo is your only assurance that the product has met rigorous interoperability testing requirements to assure products from different vendors will work together. The Wi-Fi CERTIFIED logo means that it is a "safe" buy.
Wi-Fi certification comes from the Wi-Fi Alliance, a non profit international trade organisation that tests 802.11 based wireless equipment to make sure that it meets the Wi-Fi standard and works with all other manufacturer's Wi-Fi equipment on the market. The Wi-Fi Alliance (WELA) also has a Wi-Fi certification program for Wi-Fi products that meet interoperability standards. It is an international organisation devoted to certifying interoperability of 802.11 products and to promoting 802.11as the global wireless LAN std across all market segment.


In IEEE's proposed standard for wireless LANs (IEEE 802.11), there are two different ways to configure a network: ad-hoc and infrastructure. In the ad-hoc network, computers are brought together to form a network "on the fly." As shown in Figure 1, there is no structure to the network; there are no fixed points; and usually every node is able to communicate with every other node. A good example of this is the aforementioned meeting where employees bring laptop computers together to communicate and share design or financial information. Although it seems that order would be difficult to maintain in this type of network, algorithms such as the spokesman election algorithm (SEA) [4] have been designed to "elect" one machine as the base station (master) of the network with the others being slaves. Another algorithm in ad-hoc network architectures uses a broadcast and flooding method to all other nodes to establish who's who.
Power System Contingencies
Power System Contingencies

Power system voltage control has a hierarchy structure with three levels: the primary, secondary, and the tertiary voltage control. Over the past 20 yrs, one of the most successful measures proposed to improve power system voltage regulation has been the application of secondary voltage control, initiated by the French electricity company, EDF, and followed by some other electricity utilities in European countries.

The secondary voltage control closes the control loop of the references value setting of controllers at the primary level. The primary objective of secondary voltage control is to achieve better voltage regulation in power systems. In addition, it brings in the extra benefit of improvement of power system voltage stability, for this application, several methods to design secondary voltage controllers have been proposed.

The useful concept of secondary voltage control is explored for a new application-the elimination of the voltage violations in power system contingencies. For this particular application, the coordination of various secondary voltage controllers is proposed to be based on a multi agent request -and- answer type of protocol to between any two agents. The resulted secondary voltage control can only cover the location where voltage controllers are installed. This paper presents results of significant progresses in investigating this new application to eliminate voltage violations in power system contingencies via secondary voltage control.

A collaboration protocol, expressed graphically as finite state machine, is proposed for the coordination among multiple FACTS voltage controllers. The coordinated secondary voltage control is suggested to cover multiple locations to eliminate voltage violations in the adjacent locations to a voltage controller. A novel scheme of a learning fuzzy logic control is proposed for the design of the secondary voltage controller. A key parameter of the learning fuzzy logic controller is proposed to be trained through off-line simulation with the injection of artificial loads in the controller's adjacent locations.

FACTS (Flexible AC Transmission Systems)
Sudden changes in the power demands or changes in the system conditions in the power system are often followed by prolonged electromechanical oscillations leading to power system instability. AC transmission lines are dominantly reactive networks characterized by their per mile series inductance and shunt capacitances. Suitably changing the line impedance and thus the real and reactive power flow through the transmission line is an effective measure for controlling the power system oscillations and thereby improving the system stability.

Advances in high power semiconductors and sophisticated electronic control technologies have led to the development of FACTS. Through FACTS the effective line impedance can be controlled within a few milliseconds time. Damping of the power system oscillation is possible through effective changes in the line impedance by employing FACTS members (SVC, STATCOM, UPFC etc).

Important Note..!

If you are not satisfied with above reply ,..Please


So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Popular Searches: cv abstract, hi fi seminar abstract, where is the abstract, abstract arts toronto, abstract 3d wallpaper hd, abstract for rolltops, getty abstract sioux,

Quick Reply
Type your reply to this message here.

Image Verification
Image Verification
(case insensitive)
Please enter the text within the image on the left in to the text box below. This process is used to prevent automated posts.

Possibly Related Threads...
Thread: Author Replies: Views: Last Post
  Electrical Engineering Projects? shakir_ali 3 1,300 10-03-2016 02:56 PM
Last Post: seminar report asees
  Electrical best project bilalmalikuet 2 1,054 05-10-2015 10:47 PM
Last Post: aniruddhachavan7
  Electrical Seminar lists3 computer science crazy 401 157,634 27-01-2015 02:35 PM
Last Post: Guest
Bug Electrical impedance tomography seminar projects crazy 3 4,314 27-05-2013 11:28 PM
Last Post: Guest
  Embedded Linux seminar report electrical engineering 1 2,758 17-12-2012 02:32 PM
Last Post: seminar details
  Comparison Of Different Electrical Machines For Hybrid Electrical Vehicles Wifi 2 2,127 26-11-2012 08:33 PM
Last Post: Guest
  ELECTRICAL HEATING METHODS seminar surveyer 2 3,030 26-11-2012 03:43 PM
Last Post: seminar details
  ELECTRICAL MACHINES seminar surveyer 1 2,264 12-11-2012 01:27 PM
Last Post: seminar details
  Axial-Field Electrical Machines computer science crazy 9 7,540 12-11-2012 01:27 PM
Last Post: seminar details
  Variable Voltage And Variable Frequency drives full report seminar presentation 2 4,816 04-10-2012 12:20 PM
Last Post: seminar details