Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Extreme Ultraviolet Lithography
Post: #1


Silicon has been the heart of the world's technology boom for nearly half a century, but microprocessor manufacturers have all but squeezed the life out of it. The current technology used to make microprocessors will begin to reach its limit around 2005. At that time, chipmakers will have to look to other technologies to cram more transistors onto silicon to create more powerful chips. Many are already looking at extreme-ultraviolet lithography (EUVL) as a way to extend the life of silicon at least until the end of the decade.

Potential successors to optical projection lithography are being aggressively developed. These are known as "Next-Generation Lithographies" (NGL's). EUV lithography (EUVL) is one of the leading NGL technologies; others include x-ray lithography, ion-beam projection lithography, and electron-beam projection lithography. Using extreme-ultraviolet (EUV) light to carve transistors in silicon wafers will lead to microprocessors that are up to 100 times faster than today's most powerful chips, and to memory chips with similar increases in storage capacity.

Extreme ultraviolet lithography (EUVL) is an advanced technology for making microprocessors a hundred times more powerful than those made today.

EUVL is one technology vying to replace the optical lithography used to make today's microcircuits. It works by burning intense beams of ultraviolet light that are reflected from a circuit design pattern into a silicon wafer. EUVL is similar to optical lithography in which light is refracted through camera lenses onto the wafer. However, extreme ultraviolet light, operating at a different wavelength, has different properties and must be reflected from mirrors rather than refracted through lenses. The challenge is to build mirrors perfect enough to reflect the light with sufficient precision


We know that Ultraviolet radiations are very shortwave (very low wavelength) with high energy. If we further reduce the wavelength it becomes Extreme Ultraviolet radiation. Current lithography techniques have been pushed just about as far as they can go. They use light in the deep ultraviolet range- at about 248-nanometer wavelengths-to print 150- to 120-nanometer-size features on a chip. (A nanometer is a billionth of a meter.) In the next half dozen years, manufacturers plan to make chips with features measuring from 100 to 70 nanometers, using deep ultraviolet light of 193- and 157-nanometer wavelengths. Beyond that point, smaller features require wavelengths in the extreme ultraviolet (EUV) range. Light at these wavelengths is absorbed instead of transmitted by conventional lenses


Computers have become much more compact and increasingly powerful largely because of lithography, a basically photographic process that allows more and more features to be crammed onto a computer chip.

Lithography is akin to photography in that it uses light to transfer images onto a substrate. Light is directed onto a mask-a sort of stencil of an integrated circuit pattern-and the image of that pattern is then projected onto a semiconductor wafer covered with light-sensitive photoresist. Creating circuits with smaller and smaller features has required using shorter and shorter wavelengths of light

Important Note..!

If you are not satisfied with above reply ,..Please


So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Popular Searches: extreme programmi, extreme ultraviolet radiation, important features of extreme programming, email art extreme ru loc es, extreme programming basics, lithography disadvantages, abstract on extreme programming,

Quick Reply
Type your reply to this message here.

Image Verification
Image Verification
(case insensitive)
Please enter the text within the image on the left in to the text box below. This process is used to prevent automated posts.

Possibly Related Threads...
Thread: Author Replies: Views: Last Post
Sad EUVL - EXTREME ULTRAVIOLET LITHOGRAPHY seminar projects crazy 9 5,141 05-03-2012 11:45 AM
Last Post: seminar paper
  NANO-Lithography full report seminar class 0 1,296 12-05-2011 11:37 AM
Last Post: seminar class
  Extreme-temperature electronics seminar class 0 930 09-03-2011 03:16 PM
Last Post: seminar class
  Immersion Lithography OPTICAL LITHOGRAPHY computer science crazy 0 1,708 17-09-2009 12:53 AM
Last Post: computer science crazy
  Immersion Lithography computer science crazy 0 1,430 22-09-2008 12:22 AM
Last Post: computer science crazy