Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Fast Convergence Algorithms for Active Noise Controlin Vehicles
Post: #1

When reference signal for the FxLMS algorithm is taken from an acoustic sensor convergence can be very slow due to great eigen value spread. Using a non acoustic sensor, Such as a tachometer, cancellation of narrow band noise in the sensed fundamental frequency and harmonically related ones can be achieved very fast, although other periodic noises and underline broad band noise will remain.

Backward prediction errors resulting at the various stages of an adaptive lattice predictor(ALP) represent a a time-domain orthogonalization of the input signal.An ALP structure, with the acoustic reference has input signal, before a FxLMS makes up the FxGAL algorithm. Due to the orthogonalization, FxGAL can be significantly faster compared to FxLMS with reference from a microphone. When compared to FxLMS with tachometer signal, it is not faster but it can cancel every periodic noise, independently of the harmonical relation between them, as well as the underlined broad band noise.

The Filtered-x Least Mean Square (FxLMS) algorithm(1) is the most widely used in the context of adaptive active control, due to its simplicity as well as robustness.However the main drawback of this algorithm is its relatively slow and signal dependent convergence, which is determined by the eigen value spread of the underlying corelation matrix of the input signal.When working in nonstationary environments such as automobiles, slow convergence is a critical problem, since we would desire to cancel transient noise, which occurs at the vehicle start-ups, stops or gear-Shifts, or with sudden changes of engine speeds or road noise from tyres.

A practical solution to this problem, very commonly used, is to use non acoustic sensors, such as tachometer instead of acoustic ones and artificially generate the signal to use as reference. This way, convergence can be achieved very fast, since it is possible to generate orthogonal references(in-face and quadrate components).On the other hand, it is only possible to cancel narrow band noises in the fundamental frequency sensed by the non acoustic sensor and other harmonically related frequencies, where as every other periodic or broad band noise will remain uncancelled.
In this paper, we introduce an algorithm the Filtered-x Gradient Adaptive Lattice(FxGAL), that aims to improve the convergence of the whole adaptive systems when using acoustic sensors to get the reference signal, at the expense of increased computational complexity.

The approach consists in conditioning the FxLMS reference signal by preprocessing it and obtaining the decomposition of the signal in orthogonal(decorrelated) components.With a decorrelated input signal the convergence modes of the FxLMS system are decoupled,and the whole adaptive filter of order L turns into L independent adaptive filters of just one coefficient.This independent systems can have their own adaptation step size, in order to obtain the same convergence speed for all of them.

Important Note..!

If you are not satisfied with above reply ,..Please


So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Popular Searches: vehicle s noise, owi roboticsrobot vehicles, convergence ent com, powered by mybb active, key gen algorithms**ase papercing servicing for cloud cache, algorithms by sanjoy dasgupta, key gen algorithms**nology 2 ten mark questions and answers,

Quick Reply
Type your reply to this message here.

Image Verification
Image Verification
(case insensitive)
Please enter the text within the image on the left in to the text box below. This process is used to prevent automated posts.

Possibly Related Threads...
Thread: Author Replies: Views: Last Post
  Fuzzy Random Impulse Noise Removal From Color Image Sequences computer girl 1 1,085 24-10-2012 01:45 PM
Last Post: seminar details
  Algorithms and Issues In Client Software Design computer girl 0 614 06-06-2012 03:23 PM
Last Post: computer girl
  Conflict-free scheduling and routing of automated guided vehicles in mesh topologies computer girl 0 362 05-06-2012 12:52 PM
Last Post: computer girl
  Digital watermarking: algorithms and applications computer science topics 1 3,167 02-03-2012 10:20 AM
Last Post: seminar paper
  Fast IP Network Recovery using Multiple Routing Configurations seminar surveyer 7 3,347 15-02-2012 11:23 AM
Last Post: kodavandlaravisankar
Last Post: nibina
  Multiple Routing Configurations for Fast IP Network Recovery project report helper 12 6,603 01-07-2011 04:46 PM
Last Post: Anoushka
  ACTIVE TEMPLATE LIBRARY seminar class 0 738 07-03-2011 12:16 PM
Last Post: seminar class
  Fast recovery in IP networks using Multiple Routing Configurations seminar class 0 926 07-03-2011 10:03 AM
Last Post: seminar class
  Data Mining with Neural Networks and Genetic Algorithms seminar class 0 1,695 01-03-2011 10:20 AM
Last Post: seminar class