Thread Rating:
  • 1 Vote(s) - 3 Average
  • 1
  • 2
  • 3
  • 4
  • 5
FinFET Technology
Post: #1

FinFET Technology

Since the fabrication of MOSFET, the minimum channel length has been shrinking continuously. The motivation behind this decrease has been an increasing interest in high-speed devices and in very large-scale integrated circuits. The sustained scaling of conventional bulk device requires innovations to circumvent the barriers of fundamental physics constraining the conventional MOSFET device structure. The limits most often cited are control of the density and location of dopants providing high I on /I off ratio and finite sub threshold slope and quantum-mechanical tunneling of carriers through thin gate from drain to source and from drain to body.

The channel depletion width must scale with the channel length to contain the off-state leakage I off. This leads to high doping concentration, which degrade the carrier mobility and causes junction edge leakage due to tunneling. Furthermore, the dopant profile control, in terms of depth and steepness, becomes much more difficult. The gate oxide thickness tox must also scale with the channel length to maintain gate control, proper threshold voltage VT and performance. The thinning of the gate dielectric results in gate tunneling leakage, degrading the circuit performance, power and noise margin.

Alternative device structures based on silicon-on-insulator (SOI) technology have emerged as an effective means of extending MOS scaling beyond bulk limits for mainstream high-performance or low-power applications .Partially depleted (PD) SOIwas the first SOI technology introduced for high-performance microprocessor applications. The ultra-thin-body fully depleted (FD) SOI and the non-planar FinFET device structures promise to be the potential "future" technology/device choices. In these device structures, the short-channel effect is controlled by geometry, and the thin Si film limits the off-state leakage. For effective suppression of the off-state leakage, the thickness of the Si film must be less than one quarter of the channel length. The desired VT is achieved by manipulating the gate work function, such as the use of midgap material or poly-SiGe. Concurrently, material enhancements, such as the use of a) high-k gate material and b) strained Si channel for mobility and current drive improvement, have been actively pursued. As scaling approaches multiple physical limits and as new device structures and materials are introduced, unique and new circuit design issues continue to be presented. In this article, we review the design challenges of these emerging technologies with particular emphasis on the implications and impacts of individual device scaling elements and unique device structures on the circuit design. We focus on the planar device structures, from continuous scaling of PD SOI to FD SOI, and new materials such as strained-Si channel and high-k gate dielectric.

Partially Depleted [PD] SOI
The PD floating-body MOSFET was the first SOI transistor generically adopted for high-performance applications, primarily due to device and processing similarities to bulk CMOS device.
The PD SOI device is largely identical to the bulk device, except for the addition of a buried oxide ("BOX") layer. The active Si film thickness is larger than the channel depletion width, thus leaving a quasi-neutral "floating" body region underneath the channel. The V T of the device is completely decoupled from the Si film thickness, and the doping profiles can be tailored for any desired VT. The device offers several advantages for performance/ power improvement:

1) Reduced junction capacitance,

2) Lower average threshold due to positive V BS during switching.

3) Dynamic loading effects, in which the load device tends to be in high VT state during switching The performance comes at the cost of some design complexity resulting from the floating body of the device, such as

1) Parasitic bipolar effect and

2) Hysteretic VT variation.
Post: #2
Hey pls can u provide me with a pdf or more details of this seminars. Am really interested in this topic.Pls help
Post: #3
my mail id is aarunb88[at]

Important Note..!

If you are not satisfied with above reply ,..Please


So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Popular Searches: finfet advantages, finfet seminar report and ppt, finfet basic operation, finfet, finfet technology literature survey, nested finfet, soi camp pendleton,

Quick Reply
Type your reply to this message here.

Image Verification
Image Verification
(case insensitive)
Please enter the text within the image on the left in to the text box below. This process is used to prevent automated posts.

Possibly Related Threads...
Thread: Author Replies: Views: Last Post
  5G technology dhanya1987 8 10,508 11-04-2016 11:21 AM
Last Post: dhanyavp
  FinFET Technology computer science crazy 12 9,850 10-03-2015 04:38 PM
Last Post: seminar report asees
  Cellonics Technology computer science crazy 3 2,450 05-09-2014 09:45 PM
Last Post: seminar report asees
  Latest Invention: Acoustic Ear-scanning Technology to Help Avoid Theft project report helper 10 7,288 20-08-2014 09:02 PM
Last Post: preethikrishna
  RFID Technology computer science crazy 4 3,444 09-08-2014 07:10 PM
Last Post: Guest
  Seminar Report On Optical Computing Technology mechanical wiki 3 3,428 27-07-2013 12:41 PM
Last Post: computer topic
Question Sixth Sense Technology nitins60 41 71,761 22-06-2013 10:46 AM
Last Post: Guest
  Blue Eyes Technology sprity 21 27,944 30-01-2013 12:54 PM
Last Post: seminar details
  3G MOBILE COMMUNICATION TECHNOLOGY full report seminar presentation 21 27,951 29-01-2013 11:06 AM
Last Post: seminar details
  Cellonics Technology computer science crazy 25 25,654 10-01-2013 03:34 PM
Last Post: seminar details