Thread Rating:
  • 1 Vote(s) - 2 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Parallel Computing In India
Post: #1

We all know that the silicon based chips are reaching a physical limit in processing speed, as they are constrained by the speed of electricity, light and certain thermodynamic laws. A viable solution to overcome this limitation is to connect multiple processors working in coordination with each other to solve grand challenge problems. Hence, high performance computing requires the use of Massively Parallel Processing (MPP) systems containing thousands of power full CPUs.

Processing of multiple tasks simultaneously on multiple processors is called Parallel Processing. The parallel program consists of multiple active processes simultaneously solving a given problem. A given task is divided into multiple sub tasks using divide-and-conquer technique and each one of them are processed on different CPUs. Programming on multiprocessor system using divide-and-conquer technique is called Parallel Processing.
The development of parallel processing is being influenced by many factors. The prominent among them include the following:

1.Computational requirements are ever increasing, both in the area of scientific and business computing. The technical computing problems, which require high-speed computational power, are related to life sciences, aerospace, geographical information systems, mechanical design and analysis, etc.
2.Sequential architectures reaching physical limitation, as they are constrained by the speed of light and thermodynamics laws. Speed with which sequential CPUs can operate is reaching saturation point ( no more vertical growth ), and hence an alternative way to get high computational speed is to connect multiple CPUs ( opportunity for horizontal growth ).

3.Hardware improvements in pipelining, super scalar, etc, are non scalable and requires sophisticated compiler technology. Developing such compiler technology is difficult task.

4.Vector processing works well for certain kind of problems. It is suitable for only scientific problems ( involving lots of matrix operations). It is not useful to other areas such as database.

5.The technology of parallel processing is mature and can be exploited commercially, there is already significant research and development work on development tools and environment is achieved.

6.Significant development in networking technology is paving a way for heterogeneous computing.
India launched a major initiative in parallel computing in 1988. There are five or six independent projects to construct parallel processing systems. This was motivated by the need for advanced computing, a vision of developing its own technology, and difficulties (political and economic) obtaining commercial products.

The creation of the Center for Development of Advanced Computing (C-DAC) and concurrently other efforts at National Aerospace Laboratory (NAL), Bangalore, Advanced Numerical Research & Analysis Group (ANURAG), Hyderabad, Bhabha Atomic Research Center (BARC), Bombay, Center for Development of Telematics (C-DOT), Bangalore, marked the beginning of high performance computing in India.
Post: #2
Parallel Computing

What is computing
types of computing
What is serial computing
Draw backs of serial computing
What is parallel computing
Advantages of parallel computing over serial
Applications of parallel computing

types of computing
1) Serial computing

2) Parallel Computing

Draw Backs of Serial computing

Low Speed of processing
Time consuming
Not efficient & Not convenient computing

Advantages of Parallel computing over serial

High Speed of proceesing
Less time required for computing than serial computing
More efficient & convenient computing
Most of the Systems use the parallel computing
Post: #3
Presented by
Justin Reschke

Parallel Computing
Concepts and Terminology:
What is Parallel Computing?

Traditionally software has been written for serial computation.
Parallel computing is the simultaneous use of multiple compute resources to solve a computational problem.
Concepts and Terminology:
Why Use Parallel Computing?

Saves time – wall clock time
Cost savings
Overcoming memory constraints
It’s the future of computing
Concepts and Terminology:
Flynn’s Classical Taxonomy

Distinguishes multi-processor architecture by instruction and data
SISD – Single Instruction, Single Data
SIMD – Single Instruction, Multiple Data
MISD – Multiple Instruction, Single Data
MIMD – Multiple Instruction, Multiple Data
Flynn’s Classical Taxonomy:
Only one instruction and data stream is acted on during any one clock cycle
Flynn’s Classical Taxonomy:
All processing units execute the same instruction at any given clock cycle.
Each processing unit operates on a different data element.
Flynn’s Classical Taxonomy:
Different instructions operated on a single data element.
Very few practical uses for this type of classification.
Example: Multiple cryptography algorithms attempting to crack a single coded message.
Flynn’s Classical Taxonomy:
Can execute different instructions on different data elements.
Most common type of parallel computer.
Concepts and Terminology:
General Terminology

Task – A logically discrete section of computational work
Parallel Task – Task that can be executed by multiple processors safely
Communications – Data exchange between parallel tasks
Synchronization – The coordination of parallel tasks in real time
Concepts and Terminology:
More Terminology
Granularity – The ratio of computation to communication
 Coarse – High computation, low communication
 Fine – Low computation, high communication
Parallel Overhead
 Synchronizations
 Data Communications
 Overhead imposed by compilers, libraries, tools, operating systems, etc.
Parallel Computer Memory Architectures:
Shared Memory Architecture

All processors access all memory as a single global address space.
Data sharing is fast.
Lack of scalability between memory and CPUs
Parallel Computer Memory Architectures:
Distributed Memory

Each processor has its own memory.
Is scalable, no overhead for cache coherency.
Programmer is responsible for many details of communication between processors.
Parallel Programming Models
Exist as an abstraction above hardware and memory architectures
 Shared Memory
 Threads
 Messaging Passing
 Data Parallel
Parallel Programming Models:
Shared Memory Model

Appears to the user as a single shared memory, despite hardware implementations.
Locks and semaphores may be used to control shared memory access.
Program development can be simplified since there is no need to explicitly specify communication between tasks.
Parallel Programming Models:
Threads Model

A single process may have multiple, concurrent execution paths.
Typically used with a shared memory architecture.
Programmer is responsible for determining all parallelism.
Parallel Programming Models:
Message Passing Model

Tasks exchange data by sending and receiving messages.
Typically used with distributed memory architectures.
Data transfer requires cooperative operations to be performed by each process. Ex.- a send operation must have a receive operation.
MPI (Message Passing Interface) is the interface standard for message passing.
Parallel Programming Models:
Data Parallel Model

Tasks performing the same operations on a set of data. Each task working on a separate piece of the set.
Works well with either shared memory or distributed memory architectures.
Designing Parallel Programs:
Automatic Parallelization

 Compiler analyzes code and identifies opportunities for parallelism
 Analysis includes attempting to compute whether or not the parallelism actually improves performance.
 Loops are the most frequent target for automatic parallelism.
Designing Parallel Programs:
Manual Parallelization

Understand the problem
 A Parallelizable Problem:
Calculate the potential energy for each of several thousand independent conformations of a molecule. When done find the minimum energy conformation.
 A Non-Parallelizable Problem:
The Fibonacci Series
 All calculations are dependent
Designing Parallel Programs:
Domain Decomposition

Each task handles a portion of the data set.
Designing Parallel Programs:
Functional Decomposition
Each task performs a function of the overall work
Parallel Algorithm Examples:
Array Processing

Serial Solution
 Perform a function on a 2D array.
 Single processor iterates through each element in the array
Possible Parallel Solution
 Assign each processor a partition of the array.
 Each process iterates through its own partition.
Parallel Algorithm Examples:
Odd-Even Transposition Sort

Basic idea is bubble sort, but concurrently comparing odd indexed elements with an adjacent element, then even indexed elements.
If there are n elements in an array and there are n/2 processors. The algorithm is effectively O(n)!
Initial array:
 6, 5, 4, 3, 2, 1, 0
6, 4, 5, 2, 3, 0, 1
4, 6, 2, 5, 0, 3, 1
4, 2, 6, 0, 5, 1, 3
2, 4, 0, 6, 1, 5, 3
2, 0, 4, 1, 6, 3, 5
0, 2, 1, 4, 3, 6, 5
0, 1, 2, 3, 4, 5, 6
Worst case scenario.
Phase 1
Phase 2
Phase 1
Phase 2
Phase 1
Phase 2
Phase 1
Other Parallelizable Problems
The n-body problem
Floyd’s Algorithm
 Serial: O(n^3), Parallel: O(n log p)
Game Trees
Divide and Conquer Algorithms
Parallel computing is fast.
There are many different approaches and models of parallel computing.
Parallel computing is the future of computing.
Post: #4
Hi please i need the full details of this topic: PARALLEL COMPUTING IN INDIA. Send the reply to: tjoneluv[at], tunjiadeneye[at] I will be very glad if my request would be granted by you. Thanks
Post: #5
to get information about the topic Parallel Computing In India full report, ppt and related topic refer the link bellow
Post: #6
to get information about the topic parallel computing full report ppt and related topic refer the link bellow

Important Note..!

If you are not satisfied with above reply ,..Please


So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page
Popular Searches: parallel ieee 488 microcontroller 8051, parallel distributed computing, state bankof india pmsb ac, parallel computing seminar report in computing, india glycols kashipur, fadec india, digital signage india,

Quick Reply
Type your reply to this message here.

Image Verification
Image Verification
(case insensitive)
Please enter the text within the image on the left in to the text box below. This process is used to prevent automated posts.

Possibly Related Threads...
Thread: Author Replies: Views: Last Post
  A SEMINAR REPORT on GRID COMPUTING Computer Science Clay 5 7,873 09-03-2015 04:48 PM
Last Post: iyjwtfxgj
Star Internet Telephony Policy in INDIA Computer Science Clay 3 2,343 21-09-2014 06:10 PM
Last Post: Guest
  Soft Computing seminar surveyer 2 3,876 29-10-2013 03:50 PM
Last Post:
  Modular Computing seminar report computer science crazy 4 7,623 08-10-2013 04:32 PM
Last Post: Guest
  self managing computing system full report computer science technology 5 6,772 18-05-2013 09:48 AM
Last Post: computer topic
  Unicode And Multilingual Computing computer science crazy 2 1,216 06-05-2013 11:18 AM
Last Post: computer topic
  What Networking of Information Can Do for Cloud Computing project topics 1 1,171 29-03-2013 01:03 AM
Last Post: Guest
  pervasive computing full report computer science technology 11 10,670 02-03-2013 11:34 AM
Last Post: seminar details
  Nanocell Logic Gates For Molecular Computing full report seminar presentation 3 2,891 02-01-2013 10:21 AM
Last Post: seminar details
  GREEN COMPUTING A SEMINAR REPORT Computer Science Clay 10 22,937 31-12-2012 10:40 AM
Last Post: seminar details